Cambridge
International
AS \& A Level

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/07

Paper 7
MARK SCHEME
Maximum Mark: 50
\square

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0.
B2/1/0 means that the candidate can earn anything from 0 to 2 .

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG

BOD	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only - often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOSSee Other Solution (the candidate makes a better attempt at the same question)	

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

[^0]| Question | Answer | Marks | Partial Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\lambda=(1.2+2.3) \div 2$ | 1 | M1 | Attempt combined mean, allow $1.2+2.3$ |
| | $=1.75$ | 1 | A1 | Correct mean |
| | $\mathrm{e}^{-1.75}\left(\frac{1.75^{2}}{2}+\frac{1.75^{3}}{3!}\right)$ | 1 | M1 | Allow incorrect mean. |
| | $=0.421$ (3 sf) | 1 | A1 | Allow end errors (1 and/or 4) |
| | | 4 | | |
| 2(i) | $\frac{6}{\sqrt{120}} \quad$ oe seen | 1 | B1 | Or $6^{2 / 120}$ oe seen |
| | $\frac{30-29}{\left(\frac{6}{\sqrt{120}}\right)} \quad(=1.826)$ | 1 | M1 | \pm
 Allow without $\sqrt{ } 120$. No sd/var mix |
| | $\mathrm{P}\left(z>{ }^{\prime} 1.826\right.$ ' $)=1-\Phi\left({ }^{\prime} 1.826\right.$) | 1 | M1 | Correct tail consistent with their working |
| | $=0.034(2 \mathrm{sf})$ | 1 | A1 | 0.0339 |
| | | 4 | | |
| 2(ii) | No
 n is large $(\geqslant 30)$ | 1 | B1 | $1^{\text {st }} \mathrm{B} 1$ for either comment |
| | Sample mean is (appr) normally distrib or The CLT applies oe | 1 | B1 | $2^{\text {nd }}$ B1 for'No' with $2^{\text {nd }}$ comment (No mark for 'No' alone) |
| | | 2 | | |

Question	Answer	Marks	Partial Marks	Guidance
3(i)	$\frac{3420}{60}(=57)$	1	B1	
	$\frac{60}{59}\left(\frac{195200}{60}-' 57^{\prime 2}\right) \quad(=4.40678)$	1	M1	Oe
	$=4.41$ (3 sf)	1	A1	As final answer
		3		
3(ii)	$' 57 ' \pm z \sqrt{\frac{\text { '4.40678' }}{60}}$	1	M1	
	$z=2.326$	1	B1	$2.326-2.329$ (accept 2.33 if no better seen)
	[56.4 to 57.6] (3 sf)	1	A1	NB: use of biased variance in (ii) can score in full
		3		
4(i)	$k \int_{1}^{2}(3-x) d x=1$	1	M1	Attempt $\int \mathrm{f}(x)=1$, ignore limits or $\frac{k}{2}\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)=1$
	$k\left[3 x-\frac{x^{2}}{2}\right]_{1}^{2}=1$	1	A1	Correct integration \& limits or $\frac{k}{2}(2+1)=1$
	$(k(6-2-(3-0.5))=1)$ $k \times 1.5=1$ or $k \times \frac{3}{2}=1$ or $k=\frac{1}{1.5}$ oe $k=\frac{2}{3} \mathbf{A G}$	1	A1	No errors seen
		3		

Question	Answer	Marks	Partial Marks	Guidance
4(ii)	$\frac{2}{3} \int_{1}^{m}(3-x) d x=0.5$ oe \int from m to 2	1	M1*	Attempt Int $\mathrm{f}(x)=0.5$, ignore limits oe Or use of area of trapezium
	$\begin{aligned} & \left(\frac{2}{3}\left[3 x-\frac{x^{2}}{2}\right]_{1}^{m}=0.5\right) \\ & \frac{2}{3}\left[3 m-\frac{m^{2}}{2}-2.5\right]=0.5 \end{aligned}$	1	DM1	Sub of correct limits into their integral. Or trapezium using 1 and m / m and 2 Any correct 3-term $\mathrm{QE}=0$ or $(\mathrm{m}-3)^{2}=2.5$
	$m^{2}-6 m+6.5=0$ oe	1	A1	
	$\begin{aligned} & \left(\begin{array}{l} \left.m=\frac{6 \pm \sqrt{36-4 \times 6.5}}{2}=1.42 \text { or } 4.58\right) \\ m=1.42(3 \mathrm{sf}) \end{array}\right. \end{aligned}$	1	A1	or $\frac{6-\sqrt{10}}{2}$ oe; single correct ans
		4		
5(i)	$\mathrm{Po}(1.6)$ stated or implied	1	M1	
	$\mathrm{P}(X>3)=1-\mathrm{e}^{-1.6}\left(1+1.6+\frac{1.6^{2}}{2}+\frac{1.6^{3}}{3!}\right)$	1	M1	Allow M1 for $1-\mathrm{P}(X \leqslant 3)$, incorrect λ and allow one end error
	$=0.0788$ (3 sf)	1	A1	SR Use of Bin scores B1 only for 0.0788
		3		

Question	Answer	Marks	Partial Marks	Guidance
5(ii)	$\lambda=\frac{n}{2500}$	1	B1	Alt method 1: $e^{-\mu}<0.05$ M1 Alt method 2: $\frac{2499}{2500}$ B1
	$\mathrm{e}^{-\frac{\mathrm{n}}{2500}}<0.05 \quad \begin{array}{ll} \text { Allow }= \\ & \text { Allow incorrect } \lambda \end{array}$	1	M1	Alt method 2: $\left(\frac{2499}{2500}\right)^{n}<0.05$ M1
	$\begin{aligned} & -\frac{n}{2500}<\ln 0.05 \text { Attempt } \ln \mathrm{bs} \\ & n>7489.3(1 \mathrm{dp}) \end{aligned}$	1	M1	Alt method 1: $-\mu<\ln 0.05$ $(\mu>2.9957) \quad \text { M1 }$ Alt method 2: $n \ln \frac{2499}{2500}<\ln 0.05 \quad$ M1
	Smallest $n=7490$	1	A1	$\begin{aligned} & \text { Alt method 1: } n=\mu \times 2500 \\ & \text { Smallest } n=7490 \quad \text { A1 } \\ & \text { Alt method 2: Smallest } n=7488 \quad \text { A1 } \end{aligned}$
		4		
6(i)	$\mathrm{E}(T)=9 \times 78+7 \times 66 \quad(=1164)$	1	B1	Or $9 \times 78+7 \times 66-1200$
	$\operatorname{Var}(T)=9 \times 7^{2}+7 \times 5^{2} \quad(=616)$	1	B1	
	$\frac{1200--^{\prime} 1164^{\prime}}{\sqrt{616}} \quad(=1.450)$	1	M1	\pm Allow without $\sqrt{ }$
	$\mathrm{P}(z<1.450)=\Phi(1.450)$	1	M1	
	$=0.927$ (3 sf)	1	A1	Correct tail consistent with their mean
		5		

Question	Answer	Marks	Partial Marks	Guidance
6(ii)	$\mathrm{E}(\mathrm{D})=66-78 \quad(=-12)$	1	B1	Both needed
	$\begin{array}{ll} \operatorname{Var}(D)=7^{2}+5^{2} & (=74) \\ \frac{0-\left('^{\prime}-12^{\prime}\right)}{\sqrt{74}} & (=1.395) \end{array}$	1	M1	\pm Allow without $\sqrt{ }$
	$\mathrm{P}(\mathrm{D}>0)=1-\Phi\left({ }^{\prime} 1.395\right.$ '	1	M1	Correct tail consistent with their mean
	0.0815 (3 sf)	1	A1	Similar scheme for $\mathrm{P}(\mathrm{M}-\mathrm{W})<0$
		4		
7(i)	Prob could be different later in day or on a different day oe	1	B1	or any explanation why not random or "Not random" or "Not representative"
7(ii)	Looking for decrease (or improvement)	1	B1	oe
	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { not arrive })=0.2 \\ & \mathrm{H}_{1}: \mathrm{P}(\text { not arrive })<0.2 \end{aligned}$	1	B1	Allow " $p=0.2$ "
		2		
7(iii)	Concluding that prob has decreased (or publicity has worked) when it hasn't oe	1	B1	In context

Question	Answer	Marks	Partial Marks	Guidance
7(iv)	$\mathrm{P}(X=0)$ and $\mathrm{P}(X=1)$ attempted	1	M1	B(30, 0.2) Not nec' y added May be implied by calc $\mathrm{P}(X \leqslant 2)$ or $\mathrm{P}(X \leqslant 3)$
	$\begin{gathered} \mathrm{P}(X \leqslant 2)=0.8^{30}+30 \times 0.8^{29} \times 0.2+ \\ { }^{30} \mathrm{C}_{2} \times 0.8^{28} \times 0.2^{2} \\ (=0.0442) \end{gathered}$	1	M1	Attempt $\mathrm{P}(X \leqslant 2)$
	$\begin{array}{r} \mathrm{P}(X \leqslant 3)=0.8^{30}+30 \times 0.8^{29} \times 0.2+ \\ { }^{30} \mathrm{C}_{2} \times 0.8^{28} \times 0.2^{2}+{ }^{30} \mathrm{C}_{3} \times 0.8^{87} \times 0.2^{3} \\ =0.123 \end{array}$	1	B1	Or '0.0442' ${ }^{30} \mathrm{C}_{3} \times 0.8^{27} \times 0.2^{3}=0.123$
	cr is $X \leqslant 2$	1	A1	
	P (Type I) $=0.0442(3 \mathrm{sf})$	1	A1	
		5		
7(v)	3 is outside cr	1	M1	Comparison of 3 with their cr or $\mathrm{P}(X \leqslant 3)=0.123$ which is >0.05
	No evidence that p has decreased (or that publicity has worked)	1	A1 \checkmark	Correct conclusion. No contradictions
		2		

BLANK PAGE

Page 10 of 10

[^0]: MR -1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

 PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

